Ý nghĩa Nguyên_hàm

Các nguyên hàm có ý nghĩa quan trọng vì chúng được dùng để tính toán các tích phân, sử dụng định lý cơ bản của giải tích: nếu F là một nguyên hàm của f, thì:

∫ a b f ( x ) d x = F ( b ) − F ( a ) . {\displaystyle \int \limits _{a}^{b}f(x)\,dx=F(b)-F(a).}

Vì lý do này, tập hợp tất cả các nguyên hàm của một hàm f cho trước đôi khi được gọi là tích phân bất định của f và được ký hiệu bằng dấu tích phân, không có các cận:

∫ f ( x ) d x . {\displaystyle \int f(x)\,dx.}

Nếu F là một nguyên hàm của f, và hàm f xác định trên một khoảng nào đó, thì mọi nguyên hàm G khác của f khác với F bởi một hằng số: tồn tại một số C sao cho G(x) = F(x) + C với mọi x. Nếu tập xác định của F gồm hai hay nhiều khoảng, thì có thể chọn những hằng số khác nhau trên mỗi khoảng. Ví dụ

F ( x ) = { − 1 x + C 1 x < 0 − 1 x + C 2 x > 0 {\displaystyle F(x)={\begin{cases}-{\frac {1}{x}}+C_{1}\quad x<0\\-{\frac {1}{x}}+C_{2}\quad x>0\end{cases}}}

là nguyên hàm tổng quát nhất của f ( x ) = 1 / x 2 {\displaystyle f(x)=1/x^{2}} trên tập xác định ( − ∞ , 0 ) ∪ ( 0 , ∞ ) . {\displaystyle (-\infty ,0)\cup (0,\infty ).} của nó.

Mọi hàm liên tục f đều có nguyên hàm.

Có nhiều hàm số có nguyên hàm nhưng không thể biểu diễn dưới dạng các hàm sơ cấp. Ví dụ: ∫ e − x 2 d x , ∫ sin ⁡ ( x ) x d x , ∫ 1 ln ⁡ x d x . {\displaystyle \int e^{-x^{2}}\,dx,\qquad \int {\frac {\sin(x)}{x}}\,dx,\qquad \int {\frac {1}{\ln x}}\,dx.}

Xin xem lý thuyết vi phân Galois để thảo luận chi tiết hơn.